Theory of Computation

Lecture 05

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

al Languages Back To (bu El Atta :: Course Details:	Goog
	-
	8
add course edi	It course RG
utomata and Formal Languages	
Undergraduate	in
2018	U
Not Uploaded	-
	2
4.4	W
add files	6
add URLs	
add assignments	9
Mary Masigning ing	6
add exams	
	(edit
	add exams

Programs and Computable Functions

SIMPLE LANGUAGE III

Agenda

- Pairing Functions
- **Examples**
- ➤ Gödel Number
- **Examples**
- Coding Programs by Numbers
- **Examples**

Pairing Functions

The Pairing Functions is for coding pairs of numbers by single numbers.

$$\langle x, y \rangle = 2^{x}(2y + 1) - 1$$

If z is any given number, there is a unique solution x, y to the equation

$$\langle x,y \rangle = z$$

x is the largest number such that $2^{x} I (z + 1)$, and y is then the solution of the equation

$$2y + 1 = (z + 1)/2^x$$

Example $\langle x, y \rangle = ??$

=

<4, 0>

Example $\langle x, y \rangle = ??$

$$= 2^2(2*3+1)-1$$

$$= 4(7)-1 = 27$$

$$= 2^{0}(2*5+1)-1$$

$$= 1(11)-1 = 10$$

$$= 2^3(2*2+1)-1$$

$$= 8(5)-1 = 39$$

$$= 2^4(2*0+1)-1$$

$$= 16(1)-1 = 15$$

5
$$= 2^{x}(2y + 1) - 1 = 2^{x}(2y + 1) - 1$$

5
$$100$$

 $= 2^{x}(2y + 1) - 1$ $= 2^{x}(2y + 1) - 1$
6 $= 2^{x}(2y + 1)$ 101 $= 2^{x}(2y + 1)$
 $2^{1*}3 = 2^{x}(2y + 1)$ $2^{0*}101 = 2^{x}(2y + 1)$
 $x = 1$, $x = 0$,
 $2y+1 = 3$ $2y+1 = 101$
 $y = 1$ $y = 50$
 $5 = <1, 1>$ $100 = <0, 50>$

Gödel Number

We define the Gödel number of the sequence $(a_1, ..., a_n)$ to be the number

$$[a_1,\ldots,a_n]=\prod_{i=1}^n p_i^{a_i}$$

Example [a, b, c,...] = ??

$$[2, 3] =$$

$$[0, 2, 3] =$$

$$[2, 3, 0, 0, 0] =$$

Example [a, b, c,...] = ??

$$[2,3] = 2^{2}*3^{3}$$

$$= 4*27 = 108$$

$$[0,2,3] = 2^{0}*3^{2}*5^{3}$$

$$= 1*9*125 = 1125$$

$$[2,3,0,0,0] = 2^{2}*3^{3}*5^{0}*7^{0}*11^{0}$$

$$= 4*27*1*1*1 = 108$$

$$30 = 2^{1*}3^{1*}5^{1}$$
$$= [1, 1, 1]$$

$$120 = 2^{3}*3^{1}*5^{1}$$
$$= [3, 1, 1]$$

39 =

```
39 = 3*13
= 2^{0}*3^{1}*5^{0}*7^{0}*11^{0}*13^{1}
= [0, 1, 0, 0, 0, 1]
```

Coding Programs by Numbers

We are going to associate with each program \mathscr{P} of the language \mathscr{S} a number, which we write $\#(\mathscr{P})$, in such a way that the program can be retrieved from its number. To begin with we arrange the variables in order as follows:

$$Y X_1 Z_1 X_2 Z_2 X_3 Z_3 \dots$$

Coding Programs by Numbers

Next we do the same for the labels:

$$A_1 \ B_1 \ C_1 \ D_1 \ E_1 \ A_2 \ B_2 \ C_2 \ D_2 \ E_2 \ A_3 \dots$$

We write #(V), #(L) for the position of a given variable or label in the appropriate ordering. Thus $\#(X_2) = 4$, $\#(Z_1) = \#(Z) = 3$, #(E) = 5, $\#(B_2) = 7$.

Coding Programs by Numbers

Now let I be an instruction (labeled or unlabeled) of the language \mathcal{S} . Then we write

$$\#(I) = \langle a, \langle b, c \rangle \rangle$$

where

- 1. if I is unlabeled, then a = 0; if I is labeled L, then a = #(L);
- 2. if the variable V is mentioned in I, then c = #(V) 1;
- 3. if the statement in I is

$$V \leftarrow V$$
 or $V \leftarrow V + 1$ or $V \leftarrow V - 1$,

then b = 0 or 1 or 2, respectively;

4. if the statement in I is

IF
$$V \neq 0$$
 GOTO L'

then b = #(L') + 2.

Coding Programs by Numbers

Finally, let a program \mathscr{P} consist of the instructions I_1, I_2, \ldots, I_k . Then we set

$$\#(\mathscr{P}) = [\#(I_1), \#(I_2), \dots, \#(I_k)] - 1$$

Example

$$X \leftarrow X + 1$$

[A]
$$X \leftarrow X + 1$$

Example

$$X \leftarrow X + 1$$

$$[A] \quad X \leftarrow X + 1$$

$$\langle 0, \langle 1, 1 \rangle \rangle = \langle 0, 5 \rangle = 10$$

$$\langle 1, \langle 1, 1 \rangle \rangle = \langle 1, 5 \rangle = 21$$

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A

[A]
$$X \leftarrow X + 1$$

IF
$$X \neq 0$$
 GOTO A

[A]
$$X \leftarrow X + 1$$

IF $X \neq 0$ GOTO A

$$[A] \quad X \leftarrow X + 1$$

IF
$$X \neq 0$$
 GOTO A

$$\langle 1, \langle 1, 1 \rangle \rangle = \langle 1, 5 \rangle = 21$$

$$\langle 1, \langle 1, 1 \rangle \rangle = \langle 1, 5 \rangle = 21$$
 $\#(I_2) = \langle 0, \langle 3, 1 \rangle \rangle = \langle 0, 23 \rangle = 46$

the number of this short program is

$$2^{21} \cdot 3^{46} - 1$$
.

Determine the program whose number is 199

Determine the program whose number is 199

$$199 + 1 = 200 = 2^3 \cdot 3^0 \cdot 5^2 = [3, 0, 2].$$

Thus, if $\#(\mathscr{P}) = 199$, \mathscr{P} consists of 3 instructions, the second of which is the unlabeled statement $Y \leftarrow Y$. We have

$$3 = \langle 2, 0 \rangle = \langle 2, \langle 0, 0 \rangle \rangle$$

and

$$2 = \langle 0, 1 \rangle = \langle 0, \langle 1, 0 \rangle \rangle.$$

Thus, the program is

$$[B]Y \leftarrow Y$$
$$Y \leftarrow Y$$
$$Y \leftarrow Y + 1$$

